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TECHNICAL NOTE 3415

A UNIVERSAT. COLUMN FORMULIA FOR IOAD AT
WHICH YIELDING STARTS

By L. H. Donnell and V. C. Taien
SUMMARY

An enalysis 1s presented of the load at which ylelding first occurs
in actual columns, taking adequately into account all the factors which
have an important effeet upon this load. These factors include initial
defects and the ylelding limit of materlals. Extensive tests were made
to verify the assumed relation between the magnitudes of the defects
and the known properties of columns. The results are expressed as a
formula or chert applicable to all cases.

INTRODUCTTION

Investigation of the buckling of columms began in 1744 with Euler's
famous theory. Although a lsrge smount of work has been done on this
problem since that time, the amount of progress from the designer’'s
standpoint geems surprisingly small. The classical stabllity studies
initiated by Euler and later extended to cover various types of end
conditions, varlations in cross section, and so forth, consist in the
determination of the conditions for neutral equilibrium, under infin-
itesimal displacement, of a perfectly homogeneocus elastic columm loaded
along a perfectly straight elastlic axis. Classical stebility theories
have been found o be satisfactory for predicting the ultimete strengths
of "long," that is, very slender, columns. However, for medium or short
columns the defects always present in actusl columns and the limitations
to the elastic behavior of actusl materials, factors which are not con-
sldered in the idealized classical stability theories, become of great
importance. For such columns, which include most practical applications,
designers stlll rely upon empirical results expressed in the form of
curves or formulas, each curve or formula being of limited applicability.
These empirical results also determine the range of applieability of
the classical stability theories and, hence, must be made use of even
when applylng these theories.
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Buckling problems present certain difficulties by thelr very nature,
but the case of the column 1s the simplest of such problems; and there
seems to be no very good reason why a ratlonasl unlversal column theory
should not be developed which would spply equally to all columns and take
into account all the factors which actually have an important influence
upon the results. Such a "theory" would, of course, like all theories,
include a number of empirical factors or relations which would have to
be determined from new or existing experiments; even the classical sta-
bllity theories depend upon the empirically determined stress-strain
relations of elagstic materials. However, the amount of empirical infor-
mation required to give such a theory universasl spplicabllity would be
very smell compared wilith what would be required by purely empirical
methods. Such a "universal theory" might be somewhat inconvenient to
use for design purposes in its complete form, but for the limlted ranges
for which present empiricel methods apply it would certainly reduce to
something of comparable simplicity. The theory could thus replace
vresent deslgn methods in these reduced forms even if it were impractical
for direct use.

The advantages of such a development would go far beyond +the mere
replacement of one satlsfaetory design method by a no more satisfactory
but more "elegant" method. For example, there is now no wey to campare
one set of empirical results with another set covering a different range.
Yet, 1n meny flelds of englneering such comparisons can be made and prove
of greet value in bringing to light and making suitable allowance for
errors and the effects of variations in testing technique and in the
interpretations which different investigators put on test results, varia-
tlons which always exligt when tests are made and interpreted by different
people at different times and places.

The main advantage of such a development would, however, be the same
as appears in any field when empirical results .are supplemented by adequate
general theory. Experimental results are necessarily of limited range.
Because of the number of varlables involved, presently avallable data on
columns - in spite of the great number of tests which have been made -
cover only a small fraction of possible cases. Only an adequate theory
can permit safe extrapolation, and the existence of such a theory should
release designers fram design limitations of which they may not even be
aware.

Two general criteris are 1n common use for defining the static
strength of the parts of machines snd structures for design purposes.
One 1is based upon the loads at which ylelding of the material first
starts; the other, upon the maximum loads which can be withstood. The
first criterion seems logical to use as a basis for design of close
fitting machine parts which "fail" insofar as serving thelr purpose is
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concerned 1f an appreclable permsnent change of shape occurs. The second
criterion seems the most logical to use in the design of structures for
which the exact shape is of relatively little importance compared with
the ultimate strength.

Since columns are lmportant elements in both machines and structures
there should evidently be not one but two column theories, one for the
column load at which yielding sterts (for which little informetion exists
at present) and the other for the ultimate column strength. The present
paper 1s intended to supply the first need, namely, a rational analysis,
supported by tests of a speclial type, of the load at which yielding first
occurs in actuasl columms of any type, taking adequately into a.ccount atl
the factors which have -en important effect upon this load.

Although ultimate strengths will not be covered, it is of interest
here to consider briefly the problem of developing an ultimate-strength
theory. Up to the loaed at which yielding starts the action of a columm
is everywhere elagstic. Between this load and the ultimate load, pert of
the colum is in the elsstic state and part in the plastic state (assuming
that the material has some ductility; if not, the two loads coincide).

It is not too difficult to analyze satisfactorily this elastic-plastic
action for particular cases, and meny such analyses have been made; but
it is much more difficult to set up a general theory covering all columns,
especlally considering the widely varying behavior of different materials
in the plastic range.

Howvever, it seems to be general experience that the ultimate strength
of long columns is only & littie below the classleal stability value,
while the ultimste strength in the medium renge is probably only a little
gbove the load at which yielding starts. Only for very short columns,
approaching something which would usually be thought of as “blocks" rather
than columms, should the ultimste strength differ very greatly from some
other known value. Hence, it may be possible to develop a sufficlently
inclusive ultimate-strength theory by studying in a relatively approxl-
mate manmer the small differences between the ultimate load and other
known quantities. The difficulity, of course, is to choose the spproxi-
mations so as 1o preserve reasonable fidelity over the great range of
variebles required to meke such & theory truly "universal."

This investlgation was conducted at the Illinois Institute of
Technology under the sponsorship and with the financial assistance of
the Natlonal Advisory Committee for Aeronautics.
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SURVEY OF PREVIOUS WORK

Before detalling the present work some dlscussion should be made
of previous efforts along these lines (refs. 1 to 9). While such work
has shown promise, it has, 1n the suthors' opinion, suffered from
certain deficiencies which have largely vitiated 1ts usefulness. The
distinctlon between the load at which yielding sterts and the ultimate
load seems to have been given inadequate conslderation. Theories have
been derived for load at which ylelding sterts and the results of these
theories have been compared with ultimate load data to determine the
empirical factors defining the magnitude of expected defects. Where
direct measurements of defects have been made, they have been confined
to geometric crookedness; and other kinds of defects, which the present
tests show to have as great an effect as crockedness, have been neglected.

The relations which have been assumed between the masgnitudes of
defects and the known properties of the columms also seem both unreason-
able and founded upon inadequate data; 1t has usually been assumed that
defect magnitude is a function of length only or of & cross-sectional
dimension only or that it is & sum of independent functions of these
dimensions, whereas certainly the effects of these dimensions are
actually interdependent and other important factors influence the
defects. ILittle thought has been given to putting results in convenient
general form or to studying such matters as the effects of end conditions
and variation in cross sections or of the less important camponents of
the defects, all of which must be given adequate consideration before the
generality of any theory can be considered to be establighed.

TESTS

Specimens

Because of the large amount of scatter to be expected in the quan-
tities to be measured - the defects in columns - it was necessary to
test a large number of specilmens. All specimens were tested as columns,
and messurements were taken of their deviation from stralghtness, ini-
tially end under load. These slender specimens of rectangulasr cross
section were made of cold-rolled mild-steel bar stock, cold-rolled
2024-T3 (248~-T3) aluminum-alloy sheet, and cold-rolled TO075-T6 (75S-T6)
aluminum-alloy sheet; all were of standard masnufacture and cut and were
hendled carefully to avold introducing any defects not already present.
Although these specimens were in the long-column range, measurements of
the second and third hermonics carried the date obtained into the medium-
column range.
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To eliminate questione regarding the artificial introduction or
suppression of eccentricity at the ends, which may arise when hinged-end
columns are tested -~ for instance, eccentricities can be introduced
which add to or partielly counteract initial curvatures - all columns
were tested with built-in ends, as is the case in most practical
spplications. To simplify the tests and eliminste systematic errors
due to friction in the meassurement of end moments, the tests were made
with 100-percent end fixity. Such tests, however, are subject to
systematic errors due to deformetions in the specimens or clsmps at the
-point of clamping. To eliminate these errors the specimens were held
in loading heads 8t some distance outside the points which were taken
as the ends of the specimens, and small mirrors attached at these points
decected any rotation, which was then brought to zero by rotation of the
loading heads. While this system, of course, permits errors, 1t
eliminates the systematic errors which might seriously affect the
statistical information desired.

Description of Apparatus

Figure 1 shows & diagrammatic sketch of the loading apparatus and
the optical system used for detecting rotations of the ends of the
effective length of the specimen. The telescope is focused upon the
image of the scale reflected through the back mirror and small mirror
on the specimen. With the back mirror placed gbout 10 feet from the
apparatus rotetions of the small mirror of the order of 0.001° produce
detectable shifts of the scale polnt seen against the telescope hairline.

In the photographs of figure 2, the specimen is shown at (a), with
the small mirrors defining the effective length at (b), and with the end
clamps in the losding heads at (c). The load can be measured by the
disl gage (d) which measures the deflection of the flat springs (e); the
working sections of these springs are machined down from a thicker stock,
with fillets at the ends, which largely eliminstes hysteresis. The-
screw (f) advances the loading head to asdjust the axial load, while the
screvw crank (g) rotates the loading head about the axis (h) to bring
rotations of the small mirrors to zero.

Deviations from straightness are measured by the micrometer screw (i)
attached to the carriage (J) which moves upon a track formed of tightly
stretched pianc wires (k). The micrometer carries a silver-plated tip
upon its end (1); when this tip touches the specimen an electrical circuit
is completed. By using a galvenometer in this circuilt, measurements can
be made which are accurate to a fractlon of a thousandth of an inch.

~ During measurement of the deviation from straightness in the Initial
no-lozd condition, in order to insure freedom from accidental end forces
and moments, the specimens were held only at the center by a narrow clamp.
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Since some of the speclmens were very flexible, the welghts of the two
ends of the specimen were balanced by overhead floats at the quarter
points, as shown in figures 3(a) and 3(b). Measurements of deviation
vere made at the center line of the specimens at eight points along the
length, as shown in figure 4.

RESULTS AND DISCUSSION

As mentioned previously, the inadequacy of classical stabllity
analysis lies 1n the neglection of the limit to elastic action of actual
materials and the defects always present in actusl columns; the defects
cause bending stresses to develop before the stability limit is reached,
and these stresses combine with the direct .stress (and with any initial
stress which may be present at the critical point) to preclpitate early

yielding.

From the standpoint of column bending the important defects are
geometric crookedness, lack of elastic homogenelty, and accldental
eccentricity of loading. All of these have a similar effect In producing
an Initial deviation of the elastic axis of the bar fram the stralight
line Jolning the polnts of application of the resulbtant axlel loads,
which is called herein the "load line."

In a perfectly homogeneous column the elsstic axisg, which defines
the shape of the column for purposes of analysis by classical bending
theory, would pass through the centers of gravity of cross sections and
share the geometric crookedness of the outer surface. Because of elastic
inhomogeneity from slag inclusions, gas bubbles, and so forth, and
because of the variation in elastic properties in the axlal direction
due to the random orientation of the highly anisotropic crystals of which
most englineering materials are composed, the true elastic axis will suffer
an additional deviation from these centers of gravity, passing in effect
through the centers of gravity of cross-sectional areass welghtbted according
to the-local stiffness in the axial direction. Eccentricity of loading
shifts the load line and thus produces an additional deviation of the
elegtic axie from this line, as illustrated in an exaggerated menner in

figure 5.

For purposes of this investigation all these causes of accidental
deviationl can be lumped together. This total initial deviation of the
elastic axis from the load line is designated by the symbol W (as

lrateral loasding and built-in eccentricities also have similar
effects, and it will be shown that they can be taken into consideration
-along with the defects; however, the latter are the main concern herein,
since their eveluation is obviously the difficult prcblem.
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distinguished from the movement under load w) and called herein simply
the "deviation." The starting point of any general column theory must
be the esteblishment of laws relating the magnitudes of the lmportant
constituents of the deviation to the characteristics of columms on which
they depend.

Consider now the best wey to measure the deviation and the charac-
teristics of columns which affect it.

The deviation W will be some function of the distance x along
the loaed line, & different function for each column. The most convenient
way to describe this function is by the amplitudes of its harmonic
components, and this proves also to be the most useful way to comsider
its effect upon the buckling process. In the tests, details of which are
pregented in appendix A, the amplitudes W, of harmonic components of
the deviation of half wave length 1, were measured over lengths of bar
corresponding to one wave length of the component. This was done by
testing lengths of the bars as columns snd using an exbension of
Southwell's method (ref. 10) which had previously been developed in
reference 11. A large number of lengths and thicknesses of bars were
tested; the bars were made of three different standard materials pro-
cessed by standard methods. As expected, the deviation components were
found to depend very much upon the thickness and wave length, the com~
ponents with larger wave lengths compared with the thickness averaging
larger in ampliitude than the shorter ones.

Experience has shown that, if & number of similar columms are tested
which are as nearly identical 1n every way as it is possible to make them,
their strengths will vary considerably, but quite definite average and
limiting (thet is, maximm and minimum) strengths can be determined. If
the deviation components are measured, a corresponding variation (which
is the chief cause of the variation in strength) will be found, and again
quite definite average and limiting values can be determined for the
amplitudes of each harmonic component. This is what is meant by Yaverage”
and "limiting" values of such quantities. The variatioms from the
average represent true irreducible scatter, which can never be predicted.
However, the average deviations can be allowed for, and the scatter in
strength can be allowed for in & more rational and economical way than
by blanket factors of safety by teking into consideration the maximum
deviations which produce the minimm strengths.

If a series of related columms, identical except for a dimension or
some other characteristic which can be varied continuously, is tested and
the amplitudes Wy of deviation components are plotted ageinst this
characteristic, average and limiting curves can be determined, which
describe the function by which the average and limiting values of W

are related to this charescteristic. If the relation between the average
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and 1limiting values of Wy, and all the column characteristics which
influence them can be determined, proper allowances can be made and
uncertainty in design can be reduced to true scatter. Insofar as these
factors are not determined and proper allowances sre not made, the
uncertainty regarding the effect of any characteristic 1s added to the
true scatter.

The characteristics of columms upon which the deviation depends
might be classifled as follows: length and end conditions, size and
ghape of the cross section, the material, and the process by which the
colunm ig fabricated (which, of course, includes methods of stralghtening,
if any, standards of inspection, etec.). The first two, length and end
conditions, determine the wave lengths which are important in the
buckling process and, hence, have a very important indirect influence
upon the deviation; however, these characteristics are fully taken care
of if the effect of the wave lengths of the deviation components upon
their amplitudes is considered.

The shape of the cross section will usually be associated with the
febrication process, and this in turn is 1likely to depend upon the
materiael; these three characteristics are thus closely agsociated. In
general, it is impractical to vary these characteristics continuocusly
or describe them by numbers. Hence, their effect upon Wy, while it
may be real and important, cannot well be expressed analytically but
can best be described end taken into account by & numerilcel coefficient,
which 1s hereln designated by C or K and whose value can be tabulated
for important distinet combinations of these characteristics.

Finelly, the size of the cross section can, like the wave length,
be described by a number, and its effect upon Wy can theoretically
be expressed analytically. For columns of a given shape of cross
section (that is, for geometrically similar cross sections) the size of
the cross section can be described equally well by any characteristic
crogs-sectional dimension, such as thickness +, distance from the
neutral axls to the farthest fiber ¢, or radius of gyration p {(all
taken for the directlon of buckling being investigated).

The desired functional relation thus should involve a numerical
coefficient and three distances Wy, 1I,, and, say, t. Since it must

be dimensionally consistent there is no loss in generality if 1t involves
only any two independent ratlos between these distasnces, say Wﬁ/t and

im/t. It seems logical to try first a power-function relation between
these two ratios, which can be expressed as

- ol 2
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where C and n are to be determined. It seems likely that the

exponent n depends upon broad probability factors and may be substan-
tielly constant for all colums.

Figures 6(a) to 6(c) show measured values of Wp/t and Ip/t

plotted against each other on a logarithmic scale. Points lebeled 1, 2,
and 3 were obtained, respectively, from the magnitudes of the fundamental
component and first two harmonics of the total deviation in the test bars.
The plots show, as is to be expected, a great amount of scatter, but
they also indicate a definite tendency far Wp/t to increase rapidly

as Ip/t incresses. The lines marked "max." describe the trend for the
higher points. The lines marked "av." should have a scmewhat steeper
slope, corresponding to a larger value of n in equation (1), to fit
the points best. However, these tests cover the range of wave lengths
important for medium and long columns but not for short columns. The
lines shown, when extrepolated into the short-column range, give results
which are in line with the empirical curves and columm formulas in
camon use, whlle steeper curves would be less conservative; in the
absence of data on short columns it seems ressonable to use the relations
given by the lines shown. These lines correspond to a value of 2 for the
exponent n in equation (1) and values of C of about 0.00003 for the
maximum lines and 0.000007 far the average lines. Even this value of n
is larger then the values of O and 1 which were assumed (on the basis

of practically no evidence) in the references previously cited, except
for & recent paper (ref. 12) in which the value of 2 was proposed.

In the eppendix B the followlng general formuls is derived for the
load upon a columm at which yielding starts:

P=N- ‘}NE - PyPoy (2)
2N = By + Pcl[l + (awy A@)}

In this formuls Py = A.Sy is the cross-sectionsl area A +times the
yield stress Sy {(which may be defined in any way desired and reduced
to allow for initial stresses when this seems Justified, as discussed
in eppendix B), Pz 1e the buckling load given by classical stabllity

theory (defined as in apperdix B in case of a distributed load), P is
the correspondingly defined load at which the stress Sy is reached

at the most highly stressed point, and Wy 1s the amplitude of thsat

harmonic component of the deviaetion which has the same half wave
length 17 as the fundamental (longest) harmonic camponent of the

buckling deflection predicted by classical stablility theory. The

where
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length 17 1s what has been called the "reduced" or “equivalent hinged
colum" length, so that

Po; = wCEAp?/132 (3)

To simplify the final results it is convenient to substitute for
equation (1) the following equivalent relation:

2

xp

= Kig® - (n=2) (L)

1202

Using this with equations (2} and (3), the expression for load at which
yielding starts becomes

P=N- NE—PyPcZ (5)

Py + Pcz[? + <%§%?n/%]

Py

where

2N

i

+ Poq + KEA (n=2)

For some purposes 1t is more convenient to write this equation in terms
of stresses. Dividing through by the cross-sectional area A glves

5= - | - 8§85 ()
. (K n/2
sl (£]

Sy + Sp; + KE (n=2)

where

2Q

S = P/A is the average stress at which ylelding starts, and ScZ = Pcz/A =

x2Ep%/512 is the average stress given by classical stability theory
(thet 18, the stress at which instability would occur if the column were
perfect) .

[
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Equation (5) or (6) can reedily be put into a form involving only
three nondimensionsl ratios, sey, S/Sy = P/Pys Se1/Sy = Py /Py, and

KE/Sy, as follows:
S8 .q-l2-5a
5 q ,’q By (7

where
2q =1+ .Sgy'i . (I%)H/E(:_;l)l-%
=1+ gﬁz- + % (a = 2)

These equations, or other equivalent forms, represent a true
"universal theory" for columm load at which yielding starts. Equa~
tion (7) can easily be put in chert form; figure 7 shows such a chsrt
for the case n = 2, while figure 8 shows how such a chert would be
affected by different values of n. These charts can be considered to
be generalizations of the familiar chart of average stress versus
slenderness ratio and cover the full range from zero to infinite
slenderness ratio.

An interesting point brought out by these charts is thet only with
values of n less than 2 would the loads at which very long columms
first yield approach the classical stebility values. If n =2 they
approach values which are equal to Pgy/ [l + (KE/SY)] . TFor values of n

greater than 2 they would approach gzero. It 1s common experience that
ultimate loads of very long columms do approach the classical stability
values, but 1t seems probable from the sbove that ylelding starts at
considerably lower values.

Calculations can readily be made from equation (5), (6), or (7) or
charts such as figure T, using values of K from tables, of which teble I
nay be regarded as a first step; K may be regarded as a "roughness
factor,"” measuring the general roughness of construction. Tt is a pure
number, depending upon the assoclated factors of cross-sectional shape,
meterial, and fabrication process; average and limiting values of K
can eventually be determined for all the combinations of these factors
of practical importance. This is a lmrge order which, however, 1t will
be qulte practical to £111 in a fairly inclusive msnner by using the
extensive columm datse in the 1llterabture, that is, by ecalculating the
value of K required to make the theory flt such date; these calcula-
tions, however, will have to wailt upon the extension of the theory to
cover ultimate loads, since only uwltimate-load data seem to be available.
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It is expected that K will not differ widely for variations within
broad categories such as might be described by the words '"refined con-
struction,”" "average construction," and "rough construction" and that s
broad survey of avallable data, involving the determination of a single
number to characterize each type of comstruction, could permlt a consol-
idation of information, with the elimination of many dlscrepancies, and
a8 final relatively simple tabulation from which engineers could choose
velues applying closely to any situation.

The values of K determined for the small range of column types
which the present tests cover represent a start in this direction, but
the main purpose of the tests was to check the general form of equa-
tion (1) and determine a reasonsble value for the exponent n. As has
been mentioned, n 1likely depends upon broad probabllity laws and 1s
subJect to little variagtion. The tests seem to bear out this view.
Failure to use the most suiltable velue of n Increases the gap between
the limiting values of K; that is, the proper choice of n 1s a means
of reducing unpredictable scatter to the minimum.

Illinois Tnstitute of Technology,
Chicago, I1l., November 6, 1953.
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APPENDIX A
DEVELOPMENT OF HARMONIC ANALYSIS

Fram the principles of harmonic analysis, harmonic components
Dp cos mrx/l (where m=1, 2, 3, . . .) of a deviation D(x) of

the specimen will have amplitudes

21
Dy = (/1) f D(x)cos mrx/1 dx
8]

1 mn 3my Smse qmg
= =(a7 cO08 == + by coOs + Cq COB + d4 cos +
u( 1 g T g T g L 8

do cos 2-M831-+ co cosusmt+b2 cos 138mx+82005 -];5_8]15) (8)

In particular, the first three harmonic components will be
— N
Dy ~0.251f(ay + ap - 4y - dp) + O.k(by + bp - €1 - ca)]
D2==O.l77(&1+52-bl—h2—cl—02+ﬂ.l+d2) i (9

D3 =~ 0.231 to.hlh(a.l + 8p = dy - d.2) - (bl + by - ¢y - 02)]

Thegse formulas permit the determination of the harmonic components
of the deviation fram straightness of the outer surface of the whole
specimen, initially and under loed. In the tests only the symmetrical
components of the deviation such as those given by equation (9) were
studied, since the nonsymmetrical buckling modes of a fixed-end column
are less simple and easy to study by the present methods, and these
symmetrical components covered as great a range as could have been
covered by comsidering the nonsymmetrical modes. For components such
as those given in equation (9) it makes no difference whether the
distances aj, by, cj, - - . &re measured from the load line or from
any other parallel or nearly parallel straight line, since & linearly
varying deviation contains no such components.

The following definitions are helpful in discussing the method
used for determining the total deviation, including the part due to
inhomogeneities:
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W geometric deviation or crookedness, that is, the initial
deviation of the median line of the column from the
load line

W nongeometric deviation (due to inhomogeneities); that is,
the 1nitlal deviation of the elastic axis from the
medlian line

W=W'+W" total inltial deviation of elastic axls from load line

w movement due to load

These are illustrated diasgrammetically in figure 9 for +the no-loed
end loaded condition of a fixed-end strut such as that used in the tests.
General expressions for w and W (with similar expressions for W!
and W") can be taken as

W= Vg + Vo X/1+ > Wy cos mrx/1 + > vy sin pux/1
m P

(10)
W=W,+ Vyx/1+5 W, cos mx/1 + > V, sin pax/1
m b
The moment equilibrium equation of elementery bending theory 1s
-ET a2v/ax® = M= M + So(x + 1) + P(W + w) (11)

and the boundery conditions are x = %1
w = dw/dx = 0

Substituting expressions (10) into these equilibrium and boundary condi-
tions and using the relation Py = Lx2ET/ ?21)2 = n2EI/12 give

Z-{Wm i Bm2P°lﬁ ) - ﬂ “m} cos mrx/1 +
Z{Vp - [(PaPcz/P)- l]wrp} sin pux/1 +

MO/P+SO(x+1)/P+(Wo+wo) + (Vo + vo)x/1 =0 (12)
Wo & Vo + z wmcosmtz Vp sinpﬁ=0

vo-_l_-m:rE wmsinmﬁ+p:r§ vpcospst=0
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These relations are satisfied if, and in general only if, m=1, 2,
3 [ [ -3 P = loh‘3, 2.""6, 3-&7 - - - a.nd.

Vp - [(Pchl/P) - ];{"p =0
g - [(m21>cz/1>) - 1]wm =0

Measurements of aj, by, ¢y, - . . and use of equations (9) in the
no~load condition give Wy', while simlilar measurements end calculations
under a load P give Wp' + wp; subtraction of these gives wp. Knowing
P and calculating P,; from the dimensions and moduius of elasticity
of the material, the amplitude of the total deviation components W, can

then be obtained from the last equation in equations (13). In practice,
however, it was found easier and more accurate to measure Wp' and two

values Wp' + Wy and Wy' + Wpy under two widely different loads Pg
and Pp. The term P,; can then be eliminated between the two relations

W = [(mchl/Pa) - 1]wm
W = [(maPcz/Pb) - 1:|Vmb

(13)

giving

Wy = ¥ma¥nb(Fa, ~ Fp) (1)
V¥maPb - WmhPa,

With this formula for Wy, all measurements required are of the same
type and only relative velues are needed for the loads Py and PFy.

In figure 10 values of the ratlo Wp/t obtained for the 2024-T3
specimens, are plotted against 1Ip/t, where 1y = i/m is the helf wave
length of each harmonic component. Points lsbeled 1, 2, and 3 give,
respectively, the magnitudes of the fundementel component and first two
harmonics of the total deviation, in bars of length 2i. This infor-
mation is needed in setting up the theory for the buckling of bars of
length 213 the fundamental component is by far the most important
component, but the higher harmonic components have some effect upon the
bending stresses produced; and this effect must be evaluated (considered
in appendix B) before it can safely be disregarded.:

Tt was also desired to use the information obtained regarding the
size of the higher hermonics in order to extend the data regarding the
size of the fundamental camponents into the range of shorter columms.
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This, however, cannot be done directly; that 1s, the average and limiting
magnitudes of the third harmonics of bars of length 21 are not neces-
garily the same as those of the fundasmental components of bars of one-
third this length. If a bar of length 27 is divided into three sections
and the fundamental components are determined for each section, then the
algebraic averages of their three magnitudes should be the same as that
of the third harmonic found from the original bar. In many cases, how-
ever, the fundamental components of the short sections will be of opposite
sign and will cancel each other as far as the third harmonic of the
originel bar is concerned. For the purpose of extending the date
regarding fundamental components into the range of shorter bars, the
absokute valueg of the fundamental components of fractions of the bars

are needed. These values could be cobtained for the geometric devis-

tion W' merely by using known data to make separate harmonlc analyses
for each fraction of the bar. By the same principles as those expressed
in equation (8) the average of the a@bsolute values of the Pundementel
component of each half or third of a bar is

Dot = 0.177('8.1 - bl - ey + dll + lae - b2 - ¢o + dal)

Dyt = 0.231Do.1+1h(a1 -ec1) ~ (b - c1)| + i (15)

O.hlhlcl +ecg -d] - dzl + lo.hlh(ag - ¢p) - (b2 - ca)[]
J

The inaccuracy of harmonic analyses based upon so few points 1s probably
made up for by the fact that each value of D' or D5' represents an

average for two or three bar lengths. Of course, this averaging process
also eliminates some scatter, but the scatter of values cbtained from
such & limited number of points would probably be misleading.

The second and third harmonics of the geometrlc deviatlons of all
the columms tested were calculated by equations (9) and (15). The
values for Wo' obtained from equation (15) averaged 1.2 times those
obtained from equation (9), while the values of W3' averaged 2.0 times

those obtained fram equation (9). Figures 11(a) to 11(c) are plotted
from the data obtained from equation (15); thus, although the numbers 1,
2, and 3 indicate the source of the data, all the points can be taken as
representing the megnitudes of the fundsmental components of the geo-
metric deviation of bars. Formulas (15) could not be used in calculating
the total devietion, because the end conditions of sectlons of a bar
under load are obviously not those of fixed ends. However, there is no
reason to believe that the algebraic averages and the averages of
abgolute values of fundamental components of sectlons of & bar would
have a different average ratio for bars under load (if the sections

had been tested as separate bars) than for bars under no load. Hence,
the values for total deviation components Wo were multiplied by 1.2
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end those for Ws by 2.0 in plotting the charts of figures 6(a) to

6(c) and it is consldered that these charts therefore show, to good
approximaetion, the magnitudes of fundamental ccmponents of the total
deviation.

Comparison of the values of the total deviation given by Pigures 6(a)
to 6(c) with values of the geometric deviation given by figures 11(a) to
11(c) does not reveal very much difference in slope and in average values
end not very much difference in the scatier. From this, the important
conclusion mey be drawn that the much easier measurement of geometric
deviations will hereafter be sufficlent and should give results which
are representative of total deviations. However, this result 1s ir no
sense due to the effects of inhomogeneities being small - as a matter
of fact, values of Wp" = Wp ~ W,' proved to be as large on the average
as Wy and Wp', as is indicated by figure 12 for the columm made of
T075~T6 aluminum alloy; similer results were obtained wilth the other two
neterials. The reason why, in splte of this, there is so little dlffer-
ence between average and limiting values of W and of W' 1is that the
deviations caused by inhomogeneities W" are as often in the opposite
direction and subtract from those due to geametric curvature as they are
in the same direction; hence, these deviations have 1ittle effect upon
the average values and not very much upon limiting values. However,
1t would have been impossible to predlct this result in advance or to
have verified it without an experlmental program similar to the present
one.
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APPENDIX B

THEORETICAL: DERTVATION

Simple Case

Consider first the simplest case, namely, that of & uniform column
hinged at both ernds and of such proportions that only buckling in one
Plane, taken as that of the paper, need be considered. TFigure 13 shows
the elastic axis of such 2 hinged-end column of length 1, loaded by an
axial force P, and with initial total deviation W and movement under
load w. Neglecting the weight or other lateral loading (which can be
considered by adding the corresponding deflectlon to W, as discussed
later), the equilibrium is given by

-ET d2w/dx® = P(W + W) (16)
and the end conditions are
x=0,1
w = d%fax2 = 0

These relations can be satisfied 1if

W= Z Wy sin mrx/31
™
(17)
W= > Wy sin mx/1
m .

and this expression for W 1s sufficiently general to represent (that
is, converge to) any possible deviation shape. Substituting expressions
(17) into equation (16) and using Py = 72EI/12 gives

> {Wm - [(mEPcZ/P) - ]]wm} sin mex/1 = O
which is satisfied, in general, only if

v = wm/[(maPcz/P) - 1] (18)
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It is general experlience that ylelding will first occur in such a
case because of a cambination of the direct stress P/A and the bending
stress at an extreme fiber of the middle cross section. This will occur
when the yield-point stress in compression

-2 2w
A Ec(dxa)x=1/2

Using relation (18) this becomes

Wy m2(Wm/W1) sin mx/2

P L+ PR W1 - (19)
YIETE am -1 fm?Pcz/P) “1/[Cerf?) - 4]

Multiplying through by A glves .

P, -p4 2Bl /2 | EAFTA .. .L (20)

4 B /B -1 [(gpeym) - 1] /e - 1]

Now, from figure 10 the harmonic components of the deviation of =
column are on the average related about as

B o8 - o)

t
or ¢ (21)

so that, on the average,
| V| = A [

|¥5] ~ | /27
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Equation (19) then becomes

Py = P + P, /e b Pzt (22)
(Pey/P) - 1| 3[(9Pey/P) - 1]

The bending stress wlll increase and approach infinity as P approaches
Pe; 80 that yielding must alweys occur before P reaches this value.

For values of P bDetween O and P,; the second term in the braces

of equation (22) never exceeds 1/27. For practical strute its maximum
value would be considerebly less, and further terms of the serles would
be much smaller. Hence, in this case the effect of the higher harmonies
upon the bending stress can be neglected; in any case they would only
affect the scatter, since they are as likely as not to cause bending of
opposite sign from the -fundemental component, as suggested by the + sign
in equation (22).

. Neglecting all but the first term in the braces of equation (22)

and solving for P glve eguation (2), which has previocusly been discussed.
It might be pointed out here that in applying relation (%) to the case of
hinged struts the values' of K found from figure 6 should probably be
miltiplied by 1.2, since, as discussed previously, values higher by this
amount, on the averasge, would probably have been obtalned had the funda-
mental ccamponent been measured over half the length (by testing hinged-
end columns) instead of over the lengths actually tested. This factor

has been included in making up table I, so that the values given in this
table are sultable for hinged-end columns.

Before finishing with this case same discussion might be masde of
the effect of Initial stresses and lateral loads or bulli-in eccentric~
ities. Initial stresses distributed on a microscopic scale (due
presumably to yielding under previous small loads caused by stress
concentrations around crystals and inclusions) can probably be neglected,
like these stress concentrations themselves, since such effects are very
local and scattered and probably have no signlficant effect on over-all
shape. However, in cases where significant initiasl compressive
stress S§1 in the axial direction is known to be present on the outer
fibers of the colum (as may sometimes be the case because of rolling
or other fabrication processes) the stress 5S4 should evidently be
added to the right-hand side of equation (19). This is the same thing
as substituting & "reduced yield stress" Sy' = Sy - Sy for Sy, and
this seems to be the simplest way to allow for such effects.

Deflections due to known lateral loads and known bullt-in eccen-
tricity add to or (Jjust as likely) subtract from those already considered.
Iet the amplitude of the harmonlc component of the total deviation due
to these causes, having the same shape as the fundamental camponent of

*
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the buckling shape predicted by clessical stability theory, be Uy,
which corresponds to the amplitude Wi in equations (i) and (5) due to
accldental causes. Then, if Kpax' 1is a modified value to be used
instead of Kpay to allow for the effect of Uy, there result

T
f‘( m )
and

e(W1 + Uy) _ [(Kmax‘)l/ell :

02 xp

Eliminating W; and solving for Kmax' give

-2\2/n
A _"nLUl.Efl_z.)
Knex (Kmax + -
= Kpax + -"—j—‘z—‘-} (n=2) (23)
1

Thus, Kgy should evidently not be chenged unless Uy > Wy, in which
case Kgy should be figured from Uy instead of W;.

General Case

The foregoing results were derived for the speclal case of uniform
hinged-end columns. - It is easy to show that figures 7 and 8 and the
equations from which they are derived apply to any column when KE/Sy = 0
(that is, when there is no deviation of the elastic exis.from the load
line) provided that Po; Or 8543 is defined es the classical stability

limit for the columm in question. This is true because when Pey > Py

yielding evidently will occur as soon as P = Py, while if Pgy < Py

elagtic buckling will occur first but will immedistely result in infinite
deflections and, hence, infinite bending stresses and yielding, so that
Pcz = P.

It is not the purpose of this paper to discuss classicel stability
limits, solutions for which can be found in the literature for & great
variety of colums. The interest here is in the effects of defects and
of ylelding of the material, and it remains to be demonstrated that these
effects, as exemplified by the lowering of the curves in figures 7 or 8
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as KE/S, Iincreases, are the same for all columns. It will be shown
that with certain simple modifications they probably are. Becsause
different questions arise in different cases regarding such matters as
the point in the column where yielding will first occur, it would be
difficult to set up a general solution covering all types of columns.
Part of the demonstration will therefore have to be restricted to
discussion of specific ¢ases; in deing this an attempt will be made to
span as far as possible the range covered by actual columns.

That the foregoing results epply approximately to all types of
columng can be shown by the following reasoning. It is well known that,
vhatever the complications - variations in sections, end conditions
(including negative fixity), elastic support, and so forth - the
equilibrium equation for any perfect sirut cen be satisfied by an
infinite number of deflection shaspes or "buckling modes," each asso-
ciated with a particuler value of the loed. Iet w = wif(x) represent
such a buckling mode where f£(x) defines the shape and wy, the magni-
tude of the movement, and let P bDe the assoclated buckling load, that
is, the load at which equilibrium can exist when the column without
defects 1s deflected in this shape. Now compare the equilibrium
equations (representing the equilibrium of external moments and internal
resisting moments at every section) for this perfect strut and for the
same strut with an initisl deviation W = Wlf(x) having the same shape

but a given fixed magnitude defined by W;.

Then, the term in the equilibrium equation representing the moment
of the axial force will be Ppw = Ppywif(x) for the perfect strut, where
w1 can have any value. For the strut with initial deviation the corre-
sponding term will be P(W + w) = P(Wy + w1)f(x)}, vhere Wy is given
but either the loed P o w3 18 to be determined. All the other terms

will be identical in the two equations. Hence, f{x) will also be a
solution for the second equation (seatisfying the same boundary conditions)
and the following relation must exist between the coefficlents of the
above terms:

P(Wl + W) = Ppuy
Solving for wy

vy = W;/qub/P) - ;] (24)

One way to describe the sbove result is that, if any columm has an
initial deviation in the shape of one of 1ts buckling modes, then a
movemsnt of this same shape with a magnitude given by equation (2k) will
occur under an axial load P; this movement tends to infinity if P
approaches Pp, the buckling load corresponding to this mode. If the



NACA TN 3415 23

column haes an initial deviation consisting entirely of components of

such shapes, then corresponding movements given by equation (24) will
occur for each of these components and will superpose (assuming that

the total movements are small).

The next question is whether any possible deviation of a2 columm
can be separated wholly into camponents having the shapes of the buckling
modes of the column. It would be easy to answer this question if
buckling modes were represented by normal functions, 1like the "normal
modes” of vibration of an elastic body. Buckling-mode functions are not
necessarily normal to each other (consider, for exsmple, the symmetrical
modes of a uniform fixed-end column), but they nonetheless appear to
have the property that any possible deviation of & colum can be decom-
posed into components having the shapes of the buckling modes.

Now, for any end-loaded colunm (and for any column with loads
applied between the ends, provided that P and Pp are defined as the

. axial loed on the critical cross section due to lozds distributed in
the prescribed manner) s yielding will occur when

=B gegq982) =B S N slif.)
Sy =% Ecer l(dxa)cr i Ecop (Per/?) - 1<dx2 N (25)

where Mgy, Cops and (d2f/dx2) oy are, respectively, the area, distance
to the farthest fiber, and curvature at the critical cross section (where
yielding first occurss, Po; 1s the lowest of the values of Py, and
f(x) and Wi are, respectively, the corresponding buckling shape and
the magnitude of the corresponding component of the initial deviation.
Only this component of the inltial deviation 1s considered in equa-

tion (25). The effects of the other components were considered in the
case of a simple hinged-end column and found to be negligible, but this
must be reconsidered in other specific cases; In eny case these effects
will be negligible when Pey/P 1is close to unity, since the primary
term considered in equation (25) then "blows up" while other terms
remsin small.

Now, it is general experience that £(x), the shape of a buckling
mode, is always either a harmonic function (say a sine function but with
nodes not necessarlly at the ends) or close to such a function. If it
is such a function, equation (25) corresponds exactly to the previous
derivation and gives the same results. If f(x) is not such a function
(as in the case of variable cross sections or loads distributed along
the length) it can certainly be represented closely by
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f(x) = sin nx/11 + a sin 2xx/1; + b sin 3xx/13 (26)

where 17 has the seme meaning as in its previous use and where the
values of a2 and b are limited by the fact that the curvature may
come to zero (because of large local bending stiffness) in some part of
the primary wave but canmot reverse in gign. Considering these limita-
tions, it is possible to calculate limiting values of (d2f/dx2).., where
the critical section 1s taken as that at which the curvature &2f/dx2,
and, hence, usually the bending stress, is a maximum. These limiting
values are fram -n2/172 to -2x2/1;2, while the value -nz/ll would
be required to conform to the previocus derivation. It can then be con-
cluded that, if only that component of the initial deviastion which has
the shape of the buckling mode is considered 1n calculaeting stresses,
the results obtalned for simple hinged-end columms can be applied to all
columng provided that the values of K obtained for simple columns are
meltiplied by factors ranging from 1 to 2. Changes of K of this
magnitude, of course, produce much smaller changes in P or S, &8s can
be seen in figure 7 or 8

-Extreme Cases

Now consider some extreme cases more closely. Considering first
the effect of end conditlions, at one extreme there ig the case of &
colum free at one end and fixed at the other; this can be considered
to be half of an equivalent hinged-end columm consisting of the column
and 1ts reflection in the plane normel to the load line at the fixed end.
If 1 1s taken as the length of the equivalent hinged-end column the
entire derivation given previously applies to this case.

At the other extreme, the case of & fixed~end column has been
studied previocusly for a different purpose. The critical section in
this case will be at one end, where the maximum bending due to the
deviation camponents having the shape of the primary (symmetrical)
buckling mode and the first entisymmetricel mode will add to each other;
there will always be one side of one end where these and the direct
gtress are all of the same sign, but the stress due to the next symmet-
rical mode will be as likely to subtract from this, as to add to it.
Then, using equations (10) and (13), ylelding will occur when

Sy = .:E’. - Ec(g'-z_w-)
A dx2 *x=0,21

_ P, zBEc Wy L, @/1u3(Pey/p) - 1]
A 32 (Pey/F) -1 [1.452(Py/P) - 1]

1/30(Per/?) - 1] } (1)
E?a(?cl/P) - 1]
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The meximum value of the quentity in the braces occurs when P,,;/P—w
and is 1.34 + 0.13. From this it may be concluded that, to be on the
safe side, the values of Kgy obtained for simple columme should be
increased by a factor of 1.34 and those of Kmsx» by & factor of 1.b7.
However, for Pg;/P—>1 the factor would be unity; for P.y/P = 2
these factors would be 1.23 and 1.30, respectively, and so on.

Consider next the effects of nonuniformity of cross section. Using
figure 13 let the moment of inertias of cross sections be

_sin xx/1 +> ep sin pa(x/1) ¢

I(x) = I,
sin nx/1 +Zp2ap sin pr(x/1)

p=2,3, 4, ...) (28)

which, with suitable values of ap, can readily describe any practical
varlation of stiffness; with one even term &5, this expression can

describe a wide variety of unsymmetrical veriations, or with one odd
term az, of symmetrical variations of stiffness. Then, the equilibrium

equation

-EI(x) d%vw/dx® = P(W + ) ' (29)
and boundary conditions
x = 0,1
w = d2w/dx® = 0

for hinged ends are exsctly satisfied if

w = w1 |ein nx/1 +Za.p sin p:rtx/?,:[
W = Wilein xx/1 +Zza.p sin p:rx/7,] (30)
Using expressions (30), equation (29) is satisfied if
(x2/12)EIgw = P(W + w) (31)
For W = 0 (perfect column) this would become
:tEEIo/'I,2 = Pay (32)

so from equation (31)

vy = Wil[(Pcz/P) - 1]
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Yielding will then first occur when

Sy = % - Eccr(%i‘%)c; ‘

2 .
P k13 Eccr Wl [ 2 ] .
it > Iy sin nx/1 + E ey 8in prx/1 or 3 (33)

P + Py Cerf1f/To l:sin nx/1 + E peap sin p:rx/?]
_ cr
(PCI/P) - l J

Since, from equation (32), I, evidently corresponds to. I = Ag? of a
uniform columm, 1t seems very reasopmable to assume that c,, WjA/T, will
have ebout the same average and limiting values as are found for ch/ p
in a uniform colum. The equations and charts obtalned for uniform
c¢olumns should then apply to nonuniform columms 1f the values of K
found for uniform columns are multiplied by the value of the quantity

in brackets in equation (33).

Py

Choosing x +to maximize the expression in the brackets, 1t 1s
found that this quantity may have values as high as 2 for the extreme
cases contemplated in the previous discussion of the general case. How-
ever, it is found that this quantity never differs greatly from unity
for variations which would be used in practical columms and, in fact,
mey be a little less than unity. For columms symmetriceal about the
middle, with a ratio of stiffness in the center to stiffness at the end
of 2:1, this quentity is about 0.9; for a stiffness ratio of 3 this
gquantity 1s sbout unity. The effects.of end conditions and of the
other components of the initisl deviation (which are not considered in
the above discussion) should not be very different from those for uni-
form columns, snd so it may be concluded that the results cbtained for
uniform columns can be applied to practical nonuniform columns also.

Wext, consider the effect of Intermediate loading. For simplicity
the extreme case was studied of & hinged-end column with axial loads P

epplied at the end x = O, and at the middle x = 1/2 of figure 15
Then, a good approximation to the buckling mode should be

= wj (sin nx/1 + a sin 2nx/ ?,] (3he)

where w; and & are to be determined by energy consideratioms. Iet
the component of the deviation of the same shape be

W = Wi|sin nx/1 + a sin 21rx/?,:| (34p)
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Then, the total energy chenge Quring a small change in w; 1is zero:

T C Nt

0]

[i(w N w)]a} ax = © (35)

with a similar equation for a small chenge in a. Using equations (3k4a)

and (34b), carrying out the integrations, and solving the equations
similteneocusly give

(36)

from which P,,; = leteEI/ 12 1s obtained. Yielding occurs when

_ a%w
-5 -x(E).,

P , neFc Wi X autx]
P, L ___lsin ZX 4 0.26 sin X 37
A 12 (Pey/P) - 1[ t tler

The velue of the quantity in brackets in equation (37) is about 1.12.
Thus, it appears that the results cbtained for end-loaded columms will
apply closely to columms axially loaded at Intermediate points, although
a small increase in the velue of X might be adviseble. As mentioned
previously, P and Pcz must be taken as the axiasl losds on the critical
section (where yielding first occurs) due to the load system distributed
in the prescribed menner. This is necessary in order for the term P/A
in equation (37) to represent correctly the direct stress on the eritical
section. In the case Just considered the critical sectlion was at
x =~ 0.41 (between the loads) so that this condition wes easily satisfied.
In case of a distributed load the locatlion of the critical section can
probably be estimated sufficlently closely and should be at ebout the

above location for any antisymmetricel distribution of load such as a
uniformly distributed losd.

As a final example, consider the case of & column on an elastic
foundation. If the hinged-end columm of figure 13 has an elastic
support of B (force per unit length per unit deflection) the equilib-
rium and boundary condlitions can be satisfied by the same expressions
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(eqs. (17)) for w end W as were used for the simple column. In &
previous peper (ref. 11) it is shown that in such a case

(EQ—’LZ:‘-*-E-I- + :12: ) = P(Wy + W) (38)

where the expression in the perentheses on the left side represents the
buckling stress P, corresponding to the buckling-mode shape sin mxx/1,
83 can be seen by letting Wy = O in equation (38). Buckling will occur
with the number of half waves m = m' corresponding to the smallest
value of Pp; thet is,

wP2RT , 12p_ =£2sr_2Jﬁ__z_2_ .E.) |
Y1 ® (22 m2sz2)min (12 B mPr? FEEmin'ﬁaﬁ (39)

The smallest value which the expression 1n the parentheses on the right
side can have 18 2, which occurs when

w22 [EI _ (w22 [§ E -1 (40)

for which

Assuming for simplicity that the length is such that m' given by
equation (40) is an integer, and considering only three components of
the initial deviation W, corresponding to m', m' + 1, and m' - 1,
equations (17), (38), (40), and (21) lead to- the following condition

for ylelding:
P d2w
= x Ic
% =X <dx2)cr

P + 32;5&_ é gin nixx +
A (1/m?2 (Pey/P) - 1 ?

(E’;E-%—i')(icf’l - 1) [sin(m' + 1)nx/ Z_]

[ﬁg' + 1)27':2EI 223 } Pl - 1 :
12 (m' + 1)2x2

(m'm: l)(zgl - )[sin(m' - l)ﬁx/ﬂ (41)
“:(m' - 1)251:2EI 128 ] /4:} _
(m' - 1)211’2_'
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For Pe3 {P—)l the value of the largest term in parentheses in equa-
tion (1) is unity and the results derived for simple struts then apply
exactly to the present case. The expression has its largest value if
Po3/P—>> when it becames .

t T
o B 4o (m* + 1)xx 5 1 sin (m 1) x

mixx m! + 1 1 m' - 1 T
+ +

1~ [m! + 1\2 n' V¥ © fmt - 1\2 m! \2 (42)

~ o (m mr ) e

This is a function of m! and can be evaluated without great difficulty.
It 1s found that polnts can always be found where stresses due to the
first and second, or the first and third, terms have the same sign as
the direct stress (whichever cambination gives the largest value is
chousen to determine Kgy), but the stress corresponding to the remaining
term will then be as likely to subtract from as to add to this amount
(and so may be used to determine Kpgx).

Using these flndings it is determined that for Pcz/P——boo the
vaelue of Kpy for simple columns should be multiplied by approximately

2 - [l/(m‘)z] and the velue of Kyay, by 3 - [2/(111')2], where m' 1is
the nunmber of half waves in which the column will buckle according to
clagslcal stability theory. Thus, a column with a mild elastic support,
such that the buckling shape is still one half wave, would require no
correction for K. However, & column which is so long thet it buckles
in many waves but is at the 'same time so strongly supported that. P is
small compared with the classical stebility limit (that is, the columm
is in the short~column range) may require corrections by a factor as
high as 2 for Kgy and 3 for Kpgay, because there 1s only a slight
difference between the classical stability loed and the loads corre-
sponding to neighboring buckling modes; and, hence, the corresponding
components of the deviation conbtribute a good deal Lo the total
bending stress.
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"NACA TN 3415

TABIE T

VALUES OF ROUGHNESS FACTOR K

[Values are for simple columns but may be used for other

cases as discussed in appendix B

(tentative values)

Kmax Kav
Standerd cold-rolled steel bar stock 0.00015 | 0.00003%
Strips cut from standard flat sheets of .00019 . 0000k
2024-T3 and TOT5-T6 alumimm allcy
Columng of "refined" construction .00015 .00003
(tentative values)
Columms of "average" construction . 00040 .00010
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Flgure 2.- Photographs of test apparatus.
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Figure 5.~ Shift in load line produced by eccentricity of loading.



NACA TN 3415

o
3
N

Ol

Ma{

(a)

4

10

Figure 6.- Total initial deviations of columns.

Lt ¥

(a) Cold-rolled mild-steel bar stock.

1000

37



38 NACA TN 3415
i
, 2
/ 2
[
b
2
2
|
3 4
2
. 3 2
Wt
2
| 32
3/3
2 3
3
ol 2
2
a5
& S 3
3
(b)
005 100 1,000
lm/f

(v) 2024-T3 aluminum alloy.

Figure 6.~ Continued.
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Figure 9.- Diasgram 1llustrating factors involved in total deviation
and movement for a fixed-end strut.
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